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An algorithm is discussed for solving first-order hyperbolic equations whose solution may 
exhibit very steep and changing gradients (shock-like) and large dynamic range. In developing 
the algorithm, emphasis has been placed on obtaining more accurate solutions. The algorithm 
is based on Flux Corrected Transport techniques. q-1 1987 Academic Press, Inc. 

I. INTRODUCTION 

The work presented in this paper has been motivated by a need to simulate the 
expansion of an ionized region of a neutral gas due to drift, diffusion and ionization 
growth; that is, the propagation of ionizing potential waves [l]. This problem can 
be modelled by the set of equations [2] 

where 

dtne+V~(n,v,)=v,n, 
atn, + v. (n,v,) = vine 

V-E,,=;(n,-n,), 

II, = electron density 

n, = ion density 

(1) 
(2) 

(3) 

v,, Vi = electron and ion fluid velocities 

vi = ionization rate 

E,, = space-charge electric field. 

The fluid velocities and the ionization rate are, in general, nonlinear functions of 
the local electric-field-to-neutral-density ratio, E/N (E is the total electric field 
which is the sum of the applied field, E,, and E,,). These functional forms are 
assumed to be known [a]. Ionization growth is caused by electron impact (a local 
process), and by photoionization ( non-local process). This last process has not 
been included in Eqs. (1) and (2) (see, for example, Ref. [3] for details on how to 

do so). 
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Equations (1) and (2) are the continuity equations for the electron and ion den- 
sities, respectively, and Eq. (3) is the differential form of Gauss’ law. There has been 
a considerable and continuous interest in the numerical solution of equations of the 
above type. Recently, Kunhardt and Williams [4] presented a technique for solving 
Eq. (3). We refer the reader to that paper and references therein for discussions of 
numerical techniques that can be used to solve Eq. (3). In this paper we focus on 
techniques for solving first-order hyperbolic equations, that is, Eqs. (1) and (2). 

The work on the solution of equations of this type has been mainly connected 
with compressible gas dynamics [5-131. A major difficulty encountered in this area 
is that of accurately simulating the evolution of shock and contact discontinuities 
which can develop in the flow. This problem is most severe when linite difference 
techniques are used. When first-order differencing is used, sharp gradients in the 
solution tend to be reduced by dissipation; moreover, when higher-order schemes 
are used, the solution develops dispersive ripples near the sharp gradients [14]. 

A number of finite difference schemes have been devised to address this problem 
[S, 8-131. Since these schemes are not tailored to compressible gas dynamics, they 
can be used to numerically solve Eqs. (1) and (2). However, greater demands are 
placed on the accuracy of the numerical method when considering the coupled set 
of Eqs. (l))(3). This is because small errors in the computation of the electron and 
ion densities result in errors in the space-charge density and consequently the space- 
charge field. Since the ionization rate is an exponential function of the local electric 
field, subsequent calculations of the electron and ion densities may be greatly in 
error. This is particularly a problem near the boundaries of the electron and ion 
distributions (the sheaths) where large electric fields exist, and ionization growth of 
the charged particle densities is large [3, 15-171. These densities exhibit very steep 
gradients (shock-like behavior) and change by orders of magnitude in the sheaths. 
For example, the electron density in the sheath of an avalanche in N, at 
atmospheric pressures and E, = 50 kV/cm can vary from 10’ to 10” cm ‘. The 
ionization rate v,, in the sheath may be as high as 7 x 10” set ‘. Because of the 
strong ionization growth, accuracy must be maintained over a very large dynamic 
range of densities. Moreover, ripples in the solution cannot be tolerated, since they 
are amplified with time by ionization feedback. 

We found it necessary to develop a numerical scheme that can be used to solve 
Eqs. (1) and (2) when the solution has very steep and changing gradients (shock- 
like) and large dynamic range. The scheme uses the Flux Corrected Tranport 
(FCT) method 15-7, 111 as a basis. This method was chosen because of versatility 
and guaranteed monotonicity in the particle densities. 

In the next two sections, we discuss the FCT scheme. In Section IV, we 
demonstrate its capabilities by solving the initial value problem for a I-D first-order 
hyperbolic equation, namely, 

a,n + a,(nu) = 0 
4x9 0) = g(x), 

(4) 
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where n and u are the fluid density and velocity, respectively. The velocity is space- 
time dependent, either explicitly or through a dependence on n. In either case, the 
functional form of u is assumed to be known. Results are presented for two different 
initial density distributions (g(x)) and lives choices for u. Comparisons are made 
with results obtained using the FCT algorithm of Zalesak (FCTZ) [ 111 and 
upwind FCT (UFCT) [ 121. Some final comments are given in Section V. 

II. THE FLUX CORRECTED TRANSPORT TECHNIQUE 

The essence of the numerical scheme we have developed is the FCT method 
introduced by Boris and Book [S-7] and later generalized by Zalesak [ 111. We 
refer the reader to their papers for a more complete description of the FCT. The 
FCT version we have used is that of Zalesak [ 1 I]. This algorithm (FCTZ) is 
described below. 

Assume for simplicity that the x-domain is divided into cells of equal width, dx. 
Take n, and u, to be the density and fluid velocity at the center of the ith cell. At 
time m dt, these variables are known on the grid. The objective is to compute the 
density one time-step later, nm+ l, by numerically solving Eq. (4) (the superscript 
refers to the time step). This is accomplished as follows. 

First, a “diffused” density is calculated at (m + 1) At using a low-order scheme for 
computing the spatial derivative. This step must not introduce ripples into the 
solution. An example of a low-order scheme is the donor-cell method. Using this 
method, the “diffused” density, np, is obtained from the expression 

nD=nm I I -g (ff+ I,? -.f; I.*)? 

where 

and 

fi+ 112 is the “low-order flux” at the boundary between the i and it 1 cells. 
Second, a higher-order scheme is used to compute the spatial derivative in 

Eq. (4), i.e., using “high-order fluxes.” Using the Leapfrog-Trapezoidal scheme 
[14] to obtain the higher-order fluxes, an intermediate density is calculated with 
the expresson 

nl,n’ = n(n ~ I 
I I -~(F,+,,2-F, l/2)> 
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where, for example, in fourth order 

F- ,+112(f)=~(fiil+~)-~(,~+*+f;~,). 

The high-order flux Fy+ ,,2 is then obtained as follows, 

Ff: ,o = F, + ,,z(f’S)t 

where 

and 

The density profile computed using the higher-order fluxes, FF+ ,,,*, contains ripples 
(due to dispersion). 

In the final step of the FCTZ, the high-order fluxes and the diffused solution, n,?, 
are used in conjunction with a nonlinear filter to obtain the density profile at time 
(m + 1) At. The objective is to adjust the fluxes in and out of a cell so as to decrease 
the diffusion introduced by the low-order scheme without introducing ripples into 
the density profile. The density at (WI + 1) At is obtained from the equation 

n”‘+l=nD 
I , -g CA:, ,/2-A:- 121, (6) 

where 

with 

0 6 Ci+ I:2 6 l and A,+1,2=FF:12-,f,+~2. 

A ,+ 1,2 is the diference between the high- and low-order fluxes. As can be seen from 
W (c)3 A;, 1/2 corresponds to the maximum amount of “anti-diffusion” flux 
available for reducing the diffusion introduced by the low-order scheme. The coef- 
ficients Ci+ r,? determine the amount of anti-duffision fluxes to be used. In Zalesak’s 
version of the FCT [ 111, the fluxes A;, 1,2 are determined as follows. If 
Ai+ I,&?+ 1 -ny) <O and either Ai+ ,,,(a,!‘+, -nF+ ,) ~0, or Ai+ ,,,z(n~-n~p ,) <O 
then 
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The purpose of this criterion is to ignore any anti-diffusive flux that tends to 
decrease the slope of continuously increasing or decreasing portions of the density 
profile. That is, the high-order fluxes can only steepen a profile. The coefficients 
ci+ 112 are obtained from the recipe 

ci+ l/2 = 

min( R,?+ , , R ;- ) 
min(R+, R,; ,) 

where 

if A,+ ,l2 >,O 
if A,+,.2<0, 

(7) 

if P,+ > 0 
if P’ =O, 

if P, >O 
if P; = 0, 

(84 

@b) 

and 

P,+ =max(O, A,+,‘2)-min(0, A,+,j2) Pa) 

p+ = (ny -nD) g Pb) 

P, =max(O, A,+,,,2)-min(0, A, , 2) (9c) 

Q,T = (+ - ~7”‘) g Pd) 

with 

nmax= max(n; , , np, n;+ ,) (loa) 

ny’” = min(nf , , nf , nf+ , ) (lob) 

ny = max(;, tip) (1Oc) 

~2: = min(ny, PI?). (lad) 

The + and - superscripts refer to fluxes into and out of a cell, respectively. 
Equations (10) define upper (nm”“) and lower bounds (n$‘“) for the density in the 
ith cell at time (m + 1) At. These bounds are determined from the densities at time 
m At and the “diffused” densities in the i- 1, i, and i+ 1 cells. This criterion has 
been selected to prevent the generation of ripples by requiring that local maxima or 
minima not be created. Thus, the maximum anti-diffusion fluxes that can be used 
(Q,? and Q;- in Eqs. (9)) are then obtained from the difference between the bounds 
and the diffused density at time (m + 1) At. Note that these fluxes cannot be greater 
than the maximum anti-diffusion fluxes available, namely, the A;s. The R,‘s as 
defined in Eqs. (8) insure this condition. They represent the fraction of the total 
anti-diffusion flux available in the ith cell that is to be used in correcting ny without 
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generating ripples in the final solution. This fraction is defined in each cell. At the 
boundary between two adjacent cells, i and i+ 1, only one of the anti-diffusion 
fluxes defined in each of the cells is allowed to flow. The smaller of the two anti-dif- 
fusion fluxes is selected. This criteria leads to Eq. (7) for Ci+ ,;z. 

III. A MORE ACCURATE FCT 

The difficulty in the numerical solution of Eq. (4) lies in the computation of the 
second term. The problem is in defining the correct fluxes at the cell boundaries. 
The more important errors that an be made in calculating these fluxes are 
illustrated below: 

(a) Interpolation of the product of n and U. Consider the triangular density 
distribution shown in Fig. 1. The actual flux f., l,z at the boundary between the i 
and i+ 1 cells is ni+,,,~i+,,Z. Assuming u = n (i.e., the inviscid Burgers’ equation), 

FIG. 1. Illustration of the dependence of the flux at the boundary of a cell on the interpolation of the 
product “nu.” 
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this flux equals 56.25. Interpolating the product nu, and using second-order central 
differencing, 

f r+ 112 = 102+52=625 ____ ., 2 
for second-order upwind difference, 

fi, ,;2 = 1.5 x 5* - 0.5 x o* = 37.5, 

and the accurate f;+ 1,2 = 56.25. Although the FCTZ flux-limiter (Eq. (7)) can 
correct the error incurred by the high-order scheme, this places an undue burden on 
the limiter and may result in the wrong limits in the next time step. By interpolating 
n and u independently and then taking the product, the accuracy of the high-order 
scheme is greatly improved. That is, by obtaining values for the density and velocity 
at the boundary, we can more accurately calculate the mass flow through the boun- 
dary. 

(b) Very steep gradients with large dynamic range. Consider the density dis- 
tribution sketched in Fig. 2, and assume that u is constant and equal to 1. Using 
second-order central difference, the fluxes at the boundary 

.f,+ ,;2 = (‘O”‘; lo41 u = 5.05 x 10” 

1 IO" - 
B- 
6- 

‘1 - 
32 - 

10". 
a- 
6- 

‘I- 
32 - 

2 - 

109 - 
a- 
6 - 

4 - 

2 - 

dL ’ 0 1 ’ ’ ’ I 1 I-1 1-h 1 ,+k ,+I I++* it2 

- cell no 
FIG. 2. Illustration of the consequence of profiles with large dynamic range on the computation of 

the Flux at a cell boundary. 



134 

and 

KUNHARDT AND WU 

Fourth-order central difference yields 

This flux is high and negative. Thus, for very steep gradients, higher-order schemes 
introduce more error in the solution. Moreover, the flux-limiter in FCTZ allows the 
density in cell i to ecrease to the value of the density in the i+ 1 cell. This results in 
a staircase front (see next section). After the formation of the staircase, the flux- 
limiter can no longer prevent the formation of ripples. In two dimensions, FCTZ 
inherently allows the formation of ripples. These ripples are caused by the limiter 
used in FCTZ. Because of this, we suggest the use of time-splitting techniques to 
avoid these inherent ripples in the solution, although the staircase behavior would 
still be present. 

Using upwing differencing, the flux at the boundary is 

,jJ+ ,;z = 1.5 x lo’“-0.5 x 10” = -3.5 x 10’“. 

This also is not the correct flux. When this differencing scheme is used with 
Zalesak’s flux-limiter, the results are again incorrect and also lead to staircase for- 
mation. Although the Boris and Book [S] limiter has more numerical diffusion 
than Zalesak’s, it may also lead to staircase formation (see next section). 

The problem with both of these “low-order” limiters is that they use the values of 
the densities at the i- 1 and i+ 1 cells to determine the upper and lower bounds for 
the density on the ith cell (for example, see Eqs. (10)). In very steep gradients and 
when u At < AX/~, these values are too far removed from the density in the ith cell 
to serve as accurate limiters. They introduce too much “play” in the value of the 
density in the ith cell. Since the errors introduced at each time step may compound, 
this “play” in the density is intolerable for long simulation times. 

(c) Constant density in a cell. When the gradients are large, the density 
variation in the cell may have to be taken into account to compute the correct 
fluxes. As illustrated in Fig. 3, the flux out of the ith cell is greater than it should be. 
This tends to steepen the font if one uses Zalesak’s limiter. Moreover, for large 
gradients, one must differentiate between the average density in a cell ti, and the 
density at the center of the cell, n,, since each plays a different role. This role 
depends on the interpolation scheme and the computation of the fluxes at cell 
boundaries. 

(d) Interpolation technique. The method used for interpolating the wavefront 
becomes very important when the gradients are steep. In general, high-order 
Lagrangian interpolating schemes tends to steepen the profile when used with 
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- cell no 

FIG. 3. Illustration of the consequence of assuming constant density in cell on the calculation of the 
flux at a cell boundary. 

Zalesak’s flux-limiter. For example, assume u is constant and consider the profiles 
sketched sketched in Fig. 4 at two time steps, At apart. In second order, 
fi+ l/2 = 5 x 109u and J ~ ,,2 = 5 x 10%. Let u At = 0.2 and Ax = 1. After At, the den- 
sity in cell i is given by 

~:+~‘=~:-~(.r;+,,*-.~.~,-,)= 109-0.2(5x lo”-5x lo*)~lo~. 

u:+~I is much smaller than it should be. Since lo8 is greater than 8 x lo7 (the lower 
bound on the density), the FCTZ limiter allows the density to decrease to lo’, i.e., 
it cannot stop this overestimated flow. Thus the profile steepens. 

Our thrust has been to develop a more accurate algorithm. To do this, we have 
(1) obtained better representation for the fluxes at the boundary of a cell, and (2) 
reduced the range between the upper and lower bounds of the densities in the flux- 
limiter (Eqs. ( 10)). 
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8- 
6- 

4- 

- cell no 
FIG. 4. Effect of the interpolation technique on the calculation of the flux at a cell boundary 

To obtain a better representation for the fluxes at the boundary, we (a) obtain 
the flux by independent interpolations of the fluid velocity, II, and the density n, (b) 
obtain the velocity and density at the boundary by interpolating functions of these 
quantities which have a slower variation in space and time than the quantities 
themselves, and (c) consider their variation inside a cell to calculate the mass flow 
in and out of the cell. 

Since both the fluid velocity and the density may have very steep gradients, it is 
desirable to interpolate functions of these quantities which have a slower variation 
in space than the quantities themselves. We have chosen to interpolate the natural 
logarithm of these quantities in regions where the gradients are large. Where the 
gradients are small, a linear interpolating scheme is used. Thus in regions of steep 
gradient, we find the density in the ith cell by expanding the function 
In[ 1 + n’(x,+ x, t)], where x is the distance from xi, and n/(x,+x, t) = 
n(x, + x, t)/no. n, is a scale factor. This factor is chosen so that the logarithmic inter- 
polation scheme is satisfactory for any density range. Thus, 

ln[l +n’(x,+x, t)] =ln[l +n’(xi, t)]+d,ln[l +n’(x, t)] Lr,.x+ ..., (11) 
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from which we find 

n’(x, + x, t) = [ 1 + n’(x;)] P - 1, (12) 

where 

a,=~,ln[l +n’(x, t)] IliZ,, 

and is determined computationally from the expression 

a; = 
ln[l +n’(X,+,, t)]-ln[l +n’(Xi, t)] 

AX (13) 

The reason for using 1 + n’(x, t), instead of n’(x, t), is to avoid taking the logarithm 
of zero. Note that n/(x, t) 3 0. Obtaining the density from Eq. (12) may require con- 
siderably more time than by linear interpolation of the density, if the logarithm of a 
function is not done by either hardware or expedient software. This point will be 
addressed again in the next section, when we discuss some examples. An expression 
similar to Eq. (12) is used for the velocity u’(x, r), where u’(x, t) = u(x, t)/u,, and u,, 
is a scale factor (see Appendix 1). However, since z/(x, t) may be positive or 
negative, we expand ln[ 1 + lu’(x, t)l ] for U’ < 0. The flux at the boundary, f,, ,,?, 
can then be computed from equations for n and u (Eqs. ( 12) and (Al)) evaluated at 
x = AX/~. From these equations, we can also compute the amount of mass that 
flows in and out of a cell through the boundary during time At. An expression for 
this mass flow is given in Appendix 2. We have used this mass flow to compute 
both the low- and high-order fluxes. Expressions for the high- and low-order 
schemes are given in Appendices 3 and 4, respectively. 

To further reduce the error in the solution, we have restricted the range of values 
that the density can have at (VI + 1) At by defining “high-order limiters.” This is 
most important when the density gradient is large and the time step satisfies the 
condition ui At d AX/~. For this case, the values of the density at i- 1 and i+ 1 are 
too far removed from the values at either i or i + l/2 to serve in limiting the flux. 

To obtain suitable upper and lower bounds for the density in the ith cell at time 
(m + 1) At, note that when the velocity is uniform and the criterion u At d Ax/2 is 
satisfied, the density at x = X, is bounded by n:+ 1i2 or nTP ,iZ (depending on the flow 
direction). At the maximum allowed velocity, Ax/(2 At), the density at xi becomes 
either ny+ ,I2 or n;- 1l2 (depending on the flow direction) at time (m + 1) At. 

Thus, instead of Eqs. (lo), we have 

(14) 

(15) 

nT+ I/2 and n?- 1,2 are obtained from Eq. (12), respectively. Note that when u, + ,,2 < 0 
and ui ,I2 > 0, or ui+ ,,* > 0 and uiP ,,> < 0, the reference chosen is Q,?. Equations 
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(14) and (15) form the basis of the “high-order” limiter. Using these expressions in 
Eqs. (7), (8) and (91, we obtain a better representation for the maximum anti-dif- 
fusion flux that can be used in correcting the low-order scheme. 

IV. TEST RESULTS 

To test the modified FCT algorithm described in the previous section, we have 
numerically solved Eq. (4) for the following cases 

Case 1: i g,(x)= 1 x 1()14e~((~~301/3J’ 

u(x, t) = 1 x lo-‘n(x, t) 
dt=2x IO-‘see 

Case 2: 
i 

gz(x) =g,(x) 
24(x, t) = 1 x lo’-0.50 x 10 ‘rz(x, t) 

dt=2x 10 9sec 

6- 
4- 

2- 

1 
- KY- 
z ia- 
ii 6- 

-0 
4- 

t 
2- 

ICY- 
8- 
6- 

4- 

2- 

Id’ - 
8- 
6- 

4- 

2. 

Id”- 
8’ 
6- 

4- 

2- 

i 

4 

i 

FIG. 5. Initial density distribution used is tests (I), (2). (3). and (4). 
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Case 3: g&l =g,(x) 
u(x, t) =os x 10’ - 1 x 10P’?r(X, t) 

At = 1 x lop9 set 

Case 4: g4(x)=g1(x) 
u(x, t) = constant 

At = 1 x lop9 set 

gJx) = 1 x 1014, lO<x650, At=2x 10P9sec 

Case 5: =o otherwise 

u(x, t) = constant. 

In all cases, the x-domain is uniformly sampled, with Ax, = 1. The sampled 
waveform contains 200 points. The initial waveforms for the cases investigated are 
shown in Figs. 5 and 6. The objective of the tests has been to ascertain the 
robustness and accuracy of the technique for positive and negative slope waveform- 
steepening, and for initial conditions where the function and its slope are rapidly 

20 30 40 50 60 
- cell 

70 
no 

FIG. 6. Initial density distribution used in test (5). 
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FIG. 7. Density distribution after m = 93 time steps: (a) FCTZ, (b) UFCT, and (c) our results. Note 
the staircase behavior obtained with both FCTZ and UFCT. In time, the staircase develops into 
oscillations. The curves with triangles correspond to the exact solution. 

changing in space and have a wide dynamic range. For comparison, we have also 
obtained results for each of the above cases using FCTZ [l l] and UFCT [ 121. 
The UFCT makes use of the Boris and Book (BB) flux-limiter [S]. The FCTZ 
high-order scheme is eighth order, whereas, the UFCT is second order. 

The results we have obtained after m time steps, for each of the test cases, are 
shown in Figs. 8-l 1. The number of time steps, m, is given in the figure captions. 
The corresponding analytic solution to the equation after the m time steps is also 
shown in each figure. For Cases (l))(4), our results are more accurate than those 
obtained with either FCTZ or UFCT. For Case (5), FCTZ produces the best 
results. The reason for this, as discussed in the previous section, is that the higher- 
order fluxes in the FCTZ tend to steepen the waveform (the fluxes are higher than 
the correct values), and the flux-limiting filter allows it. The square wave initial con- 
dition, Case (5), is not useful in testing the accuracy of the results because of its 
singuar (infinite) slope at the edges. 

For the examples we have considered, the UFCT with the BB limiter yields the 
highest error levels (see Fgs. 7710). The reason is that to compute the fluxes in and 
out of a cell, both the upwind differencing technique and the BB limiter, utilize 



FLUX CORRECTED TRANSPORT 141 

FIG. 7-Con/inued. 

information that is “biased” towards one side of the cell and too far removed from 
it. This results, as illustrated below, in the computation of the wrong fluxes. 
Upwind differencing tends to steepen the waveform; whereas, the BB limiter tends 
to diffuse. The Zalesak algorithm, on the other hand, is more symmetric about a 
cell which results in a more realistic calculation of the fluxes. 

To illustrate the effect of the BB limiter, assume a constant flow velocity, u, of 10’ 
and consider the monotonically increasing density distribution 

ni- I n, ni+l I?;+2 

2.3 x 10” 1 x 10” 5 x 10” 1.7 x lOI 

The high-order flux at the boundary Fi+ 1,2 = 1.5f-0.5~;P, FE 1.4 x 10”. The low- 
order flux, fi+,,2 is 1 x lo’*. The difference between these fluxes, Sj;, ,,2, is 
0.4 x 1018. Using the BB limiter [S]; namely, 

sfi+ l/2 +~@?f,+~,~) Idfj+ Lj2l, %n(dfi+ 112) 

Ax 
x -(np+,-np+, 

Ax 
At 1, w(6fi+ 1,2) - bD - HP_, 1 At II , (16) 
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- Id”- 
- *- 
- 5- 
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2. 

FIG. 8. Density distribution after m + 175 time steps for test Case (2): (a) FCTZ, (b) UFCT, and 
(c) our results. In this case, the waveform moves to the right, but the steepening occurs in the trailing 
edge. The curves with triangles correspond to the exact solution. 

we calculate for the anti-duffusion flux 0.4 x 1018. Thus, the computed flux (the sum 
of the low-order and anti-diffusion flux) is 1.4 x 10”. This value is lower than the 
actual flux through the boundary at i+ l/2. This flux is approximately 2 x 10”. 
Because of this, mass tends to lag behind in the cell; that is, the antidiffusion fluxes 
are not sufficient to compensate for the diffusion introduced by the low-order 
scheme. 

Next consider the monotonically decreasing density distribution 

4 l n, n If1 Hi+2 

1.7 x 10” 5 x 10” 1 x 10” 2.3 x 1O’O 

and again assume a positive and constant flow velocity of 10’. The high-order flux 
Fi+ 112 using UFCT [ 121, is calculated to be - 1 x lo’*, whereas, the low-order flux, 
f ,+‘,2, is found to be 5 x 10”. The difference between these two fluxes, SA.+ ,,2r is 
-6 x 10”. Using the BB limiter (Eq. (16)), we find for the anti-diffusion flux 
-6 x lo’*, and for the computed flux - 1 x lo’*. Note that the computed flux 
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FIG. 8-Coniinued. 

through the boundary at i+ l/2 is negative; the flow through that boundary is into 
cell i. The flow should obviously be out of the cell. This effect tends to steepen the 
profile. The staircase behavior obtained with the FCTZ (see Fig. 8) has been noted 
before [lo]. The staircase further evolves into ripples. A similar behavior is also 
observed with the UFCT, when used in conjunction with Zalesak’s flux-limiter. 

V. DISCUSSION AND CONCLUSIONS 

An objection to using the algorithm discussed in Section IV is the time required 
to compute the In of the function at each position xi. Considering the number of 
times that this has to be done, the algorithm may be very time-consuming if this tep 
is not done with expedience. Either hardware or microsoft techniques for 
calculating the In should yield the fastest results. These investigations were carried 
out on a Gould 6005 minicomputer, where the In of a number is done by software. 
Our simulation times are of the same order as the FCTZ, but much greater than 
the UFCT. Recall that the high-order UFCT scheme used is second order, whereas 
the high-order FCTZ is eighth order, so that increasing the order of the UFCT 

581/68/l-10 
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FIG. 9. Density distribution after rn = 175 time steps for test Case (3): (a) FCTZ, (b) UFCT, and 
(c) our results. In this case, the steepening occurs at both ends. The curves with triangles correspond to 
the exact solution. 

would result in comparable computation times. The question arises as to whether it 
would be more economical to increase the number of grid points and use another 
less time-consuming interpolating scheme. To obtain the accuracy we have achieved 
(with the large dynamic range of the waveform), the number of points would have 
to be increased by at least a factor of 10. (We have not considered non-uniform 
griding techniques.) The computation time in this case using either FCTZ or UFCT 
(eighth order) would be considerably greater than for our case. In adition, since in 
our applicaton we also have to solve Eq. (3) and include in Eqs. (1) and (2) non- 
local effects (such as photoionization [3]), the increase in the number of points 
would make the simulation impossible (these additions take considerable more time 
than calculating the flow). As mentioned in the Introduction, accuracy is necessary 
at each step if the results are to have any physical meaning. Errors in the 
calculation of the electron and ion densities in one time step result in errors in the 
calculation of the space-charge electric field. Both of these errors are greatly 
amplified with time because of ionization growth of the densities. This growth is 
exponential with vi which, on the hand, exponentially depends on the total electric 
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FIG. 9-Continued. 

field. The accuracy we have achieved and the time taken to run this algorithm has 
allowed us to simulate the evolution of Eqs. (1 )-( 3) in two dimensions. We have 
used time-splitting to achieve two-dimensionality. As mentioned in Section II, this 
avoids the formation of ripples. However, the time step must be sufficiently small to 
avoid the introduction of artificial compressibility effects [ 111. This condition is 
satisfied in the case of Eqs. (1 k(3). In this case, the time step is limited by the more 
stringent condition that the field be nearly constant in a time step. These results will 
be presented in a future paper. 

We have not obtained a stability criterion for the numerical scheme presented. 
However, since the transport scheme (not taking into account the flux limiter) has 
been derived by considering the mass flow through the boundary between the i and 
i + 1 cell, only using the information at mesh points i and i + 1 (see Appendix 2 and 
Section III), the time step must be taken to be < dX/(2U,,,), where U,,, is the 
maximum velocity in the space mesh. This condition guarantees that the calcuation 
of the mass flow through the boundary during a time dt does not involve infor- 
mation coming from mesh points further than i, is 1. This is in essence the 
Courant-Friedricks-Lewey condition [14]. In all our simulations the above con- 
dition was always satisfied. In such cases, the scheme was found to be stable. 
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FIG. 10. Density distribution after m = 600 time steps for test Case (4): (a) FCTZ, (b) UFCT. 
(c) our results. This case corresponds to the uniform displacement of the initial distribution. The curves 
with triangles correspond to the exact solution. 

APPENDIX 1: CALCULATION OF THE FLOW VELOCITY 

Let u: = u’(x;), u;, , = u’(x,+ ,). As in the calculation of the density, the velocity in 
the ith cell is obtained from the expression 

where 

hi=~[ln(l+~~~+,~+S,-?/~~~)-ln(l+/~~~+S,~2~~~+,~)] 

and 
s,=o, s,=o, S=l when uj>O, u:+,>O 

s*=o, s,=o, s= -1 when u: ~0, u:,, ~0 

s,=o, S*=l, S=l when u,! 30, ui., , < 0 

S,=l, sz=o, S=l when u,!<O u:,,>O. 
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APPENDIX 2: CALCULATION OF THE MASS FLOW 

Let xt be the position at time t which will reach xi + Ax/2 at time t + t,. Then, 
the mass between x= xt and x=x, + A.42 will flow into the i+ 1 cell. Using the 
expressions for u(xi + x) and n(x, + x) (Eqs. (Al ) and (12), respectively), we find 

Xt= AxPu,t, 
1 +b,(l +u;) t,’ 

ti is the duration of the time interval. The mass transferred to the i+ 1 cell is 

AN = JA-‘12 [(I +ni)eu’I- l] dx, 
X, 

i.e., 

Ax (’ +ni)(eU,(“.~,2)_eU,-~,)__+X[ 
ai 2 
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FIG. 11. Density distribution after m = 600 time steps for test Case (5): (a) FCTZ, (b) UFCT, (c) 
our results. 

APPENDIX 3: THE LOW-ORDER SCHEME 

The flow velocity at the boundary of the ith cell is obtained from Eq. (Al) by 
letting x = AX/~, i.e., u, + ,,2 = U(X, + AX/~). The flux at the boundary for uj+ ,!z > 0 is 

f;+ Ii2 = ui+ 1,2~r, where n,=n(x,) and u,, ,,2 is from (Al); 

otherwise f;, ,,2 = u,+ ,!2ni+, . The density at (m + 1 
expression 

) At is then obtained from the 

APPENDIX 4: THE HIGH-ORDER SCHEME 

The high-order scheme for computing the flux through the boundary at i+ l/2, 
Fi+ 1123 is described below. The flux is computed by using the results from Appen- 
dixes 1 and 2 and recognizing that the average density in a cell need not be equal to 
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the value of the density at the center. When the gradients are small, this difference 
can be neglected. However, in the region of high gradients, we must differentiate 
between the two values in order to calculate the correct flux at the boundary. In 
such regions, and when u;+ , and UT > 0, let 

Fi+ 112 n, T u, 
( ” “) = (1 + n;)( (eurcdd2) - e”‘“‘)/a,) - Ax/2 + xt 

t1 
3 

where 

xt= Ax/2-u:‘t, 

l+(l+u;)t,bi 

ai (ny Ax + Ax) 
n:‘=y sinh((aJ2) Ax) 

-1 

bi (UT Ax + Ax) 
““=? sinh((bJ2) Ax) 

-1 

(A.2) 

(A3) 

(A4) 

(A5) 
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and t, has been defined in Appendix 2. Equations (A2)(A5) get modified 
depending on the sign of UT and uy+, as discussed in Appendix 2. When the 
gradients are small (i.e., wi+ , /wi < 5 or wit, /wi > 0.2 and w, + ], w, < 1 in our code, 
where wi represents either n, or u,,) then the average value in a cell is very close to 
the center value. In this case 

n;=nT, u:‘=uy, 

The flux of the high-order scheme is obtained in two steps. First, an intermediate 
state density is calculated using 

At (Fi+ 1,2(n:, u:‘) - Fi- I12(n;, $1) nj=ny-- 
2 Ax 

and 
fl!+n! nl,“’ - ’ ’ I 2 

Moreover, if ny < 0, then n’;“’ = 0. The flux of the high-order scheme is 

FF: Ii2 = F;, ,&zj”‘, u;‘). 
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